Open-source software for satellite deformation monitoring

By on 7 June, 2017

Deformation time slice generated by the PyRate software showing the increase (positive) in range between the ground and radar satellite in three locations above longwall coal mining operations.

Scientists from Geoscience Australia have released new open-source software to open up access to remotely-sensed satellite data insights.

The new “PyRate” software was presented this week at the European Space Agency’s Fringe 2017 workshop in Helsinki, Finland. PyRate is open source Python software for collating and analysing Interferometric Synthetic Aperture Radar (InSAR) displacement time series data.

InSAR is a highly accurate, non-invasive method of detecting changes in the height of the Earth’s surface using remotely-sensed satellite imagery. This is a highly accurate satellite monitoring technique that uses two or more Synthetic Aperture Radar (SAR) images of an area to identify patterns of surface movement over time.

Until now, InSAR has been used almost exclusively by researchers, but this might change things. In 2015, for example, the research team at Sydney’s UNSW used InSAR to successfully predict a second Nepal Earthquake. With Geooscience Australia’s new software, this capability may be opened up to more diverse fields, assisting in disaster response and land use management.

Coverage and density of Sentinel-1 interferometric wide swath image data available via the Copernicus Australia Data Hub, as at 30 April 2017

By monitoring movements of the Earth’s surface, scientists can improve their understanding of how the Earth’s crust changes over time, including changes in elevation caused by larger earthquakes and potential land subsidence caused by human activities such as groundwater and resource extraction.

The new software builds upon a Python-language translation of the University of Leeds’ π-RATE software. This provides a portable and free solution that is scalable from desktop machines for small area processing to large multi-node super computers for conducting regional or continental-scale analyses.

The new software will enable Geoscience Australia to scale up its InSAR processing capability to run on the Australian National University’s National Computational Infrastructure facility super computer. It will also support other scientists to make use of the ever expanding national archive of Sentinel-1 SAR data available via the Copernicus Australia data hub, particularly for InSAR time series analysis.

The PyRate version 0.2.0 software is available through Github and via PyPI, the python package index, with additional supporting documentation provided.

The new PyRate software will be applied to data obtained for a number of existing Geoscience Australia projects, including InSAR monitoring in Queensland’s Surat Basin and in the Macarthur region, south of Sydney.

You may also like to read:


Sign up now to stay up to date about all the news from Spatial Source. You will get a newsletter every week with the latest news.

  • This field is for validation purposes and should be left unchanged.
Artificial Intelligence translating geospatial data into knowledge
Aerometrex is using supervised machine learning algorithms t...
Aerometrex reports recurring revenue growth
Aerometrex Limited has announced its results for the half ye...
Q&A with Nearmap’s Rob Newman
Nearmap’s CEO gives us a preview of next week's Locate con...
Boeing Australia flies new RAAF UAV
Boeing and the RAAF have successfully completed the first te...
Monitoring Australia’s biggest transport project
‘Tested, tried and proven’ Leica instruments and softwar...