Study maps global regrowth carbon capture potential

By on 7 October, 2020

Australian Poplar box regrowth. Image: CSIRO/Stephen Roxburgh.

CSIRO scientists have joined researchers across the globe to produce a 1km resolution map of carbon accumulation potential from forest regrowth.

Published in Nature, the study is the first of its kind, producing a ‘wall to wall’ global map that highlights forested areas with greatest carbon returns if allowed to regrow naturally.

The researchers found that average default forest regrowth rates used by the UN Intergovernmental Panel on Climate Change (IPCC) may have been underestimated by 32 percent.

“We know there is no single, one-size-fits-all solution for addressing climate change. Our goal with this study was to show where forests can capture carbon fastest on their own,a mitigation strategy that complements keeping forests standing,” said co-author Dr. Nancy Harris from World Resources Institute.

“If we let them, forests can do some of our climate mitigation work for us.”

Australia’s Commonwealth science agency, the CSIRO, supplied datasets for the study including 72 Australian forest stands, areas surveyed for biomass carbon.

Led by the Nature Conservancy, the study redefined international estimates and highlighted the role of natural forest regrowth in carbon accumulation, according to Report co-author and CSIRO Principal Research Scientist Dr. Stephen Roxburgh.

“The global study complemented recent Australian work on carbon accumulation rates for planted and naturally regenerating stands of woody biomass across Australia,” he said.

“The datasets were collected for the Australian Government’s national greenhouse gas accounting program, and were also used to better understand the carbon storage potential from restoring degraded woody vegetation.”

Human induced natural regeneration of woody vegetation is a substantial contributor to carbon storage activities being carried out under Australia’s Emissions Reduction Fund.

Dr. Roxburgh said the study found climate, rather than past land use, was the most important driver of potential carbon accumulation, with the work providing an important benchmark to assess the global potential of forest regrowth as a climate mitigation strategy.

The full report is available from Nature, with an overview of the data published on the Natural Climate Solutions World Atlas, a project by Nature4Climate (N4C) –a coalition established by The Nature Conservancy with Conservation International, World Resources Instituteand other partnersto increase global investment and action on nature-based solutions.

Stay up to date by getting stories like this delivered to your mailbox.
Sign up to receive our free weekly Spatial Source newsletter.

You may also like to read:


, , , , , , , , , , , ,


Newsletter

Sign up now to stay up to date about all the news from Spatial Source. You will get a newsletter every week with the latest news.

City of Sydney: Growing green with GIS
The City of Sydney has set targets to grow a cooler, more di...
Victorian Surveyor-General makes historic apology
The apology acknowledges the role that SGs played in the dis...
One year to go: Countdown to FIG 2025!
Thousands of surveyors from around the world will converge o...
LiDAR shows Pacific cities are older than once thought
LiDAR has helped to show that city structures were being bui...
PlanTech partners aim to transform urban planning
The new effort highlights technology’s role in improving p...
Dual-band GNSS platform
The u-blox F10 GNSS platform combines L1 and L5 to offer enh...