Underwater cables could double as seismic sensors

By on 10 December, 2019

Map of Monterey Bay seafloor
Researchers employed 20 kilometres (pink) of a 51-kilometer undersea fibre-optic cable, normally used to communicate with an off-shore science node (MARS, Monterey Accelerated Research System), as a seismic array to study the fault zones under Monterey Bay. During the four-day test, the scientists detected a magnitude 3.5 earthquake 45 kilometres away in Gilroy, and mapped previously uncharted fault zones (yellow circle). (Image by Nate Lindsey.)

Fibre-optic cables that constitute a global undersea telecommunications network could one day help scientists study offshore earthquakes and the geologic structures hidden deep beneath the ocean surface.

In a paper in the journal Science, researchers from the University of California, Berkeley, Lawrence Berkeley National Laboratory (Berkeley Lab), Monterey Bay Aquarium Research Institute (MBARI) and Rice University describe an experiment that turned 20 kilometres of undersea fibre-optic cable into the equivalent of 10,000 seismic stations along the ocean floor. During their four-day experiment in Monterey Bay, they recorded a 3.5 magnitude quake and seismic scattering from underwater fault zones.

Their technique, which they had previously tested with fibre-optic cables on land, could provide much-needed data on quakes that occur under the sea, where few seismic stations exist, leaving 70% of Earth’s surface without earthquake detectors.

“There is a huge need for seafloor seismology. Any instrumentation you get out into the ocean, even if it is only for the first 50 kilometres from shore, will be very useful,” said Nate Lindsey, a UC Berkeley graduate student and lead author of the paper.

Lindsey and Jonathan Ajo-Franklin, a geophysics professor at Rice University in Houston and a faculty scientist at Berkeley Lab, led the experiment with the assistance of Craig Dawe of MBARI, which owns the fibre-optic cable. The cable stretches 52 kilometres offshore to the first seismic station ever placed on the floor of the Pacific Ocean, put there 17 years ago by MBARI and Barbara Romanowicz, a UC Berkeley Professor of the Graduate School in the Department of Earth and Planetary Science. A permanent cable to the Monterey Accelerated Research System (MARS) node was laid in 2009, 20 kilometres of which were used in this test while off-line for yearly maintenance in March 2018.

“This is really a study on the frontier of seismology, the first time anyone has used offshore fibre-optic cables for looking at these types of oceanographic signals or for imaging fault structures,” said Ajo-Franklin. “One of the blank spots in the seismographic network worldwide is in the oceans.”

The ultimate goal of the researchers’ efforts, he said, is to use the dense fibre-optic networks around the world — probably more than 10 million kilometres in all, on both land and under the sea — as sensitive measures of Earth’s movement, allowing earthquake monitoring in regions that don’t have expensive ground stations like those that dot much of earthquake-prone California and the Pacific Coast.

“The existing seismic network tends to have high-precision instruments, but is relatively sparse, whereas this gives you access to a much denser array,” said Ajo-Franklin.

Photonic seismology

The technique the researchers use is Distributed Acoustic Sensing, which employs a photonic device that sends short pulses of laser light down the cable and detects the backscattering created by strain in the cable that is caused by stretching. With interferometry, they can measure the backscatter every 2 meters (6 feet), effectively turning a 20-kilometer cable into 10,000 individual motion sensors.

“These systems are sensitive to changes of nanometres to hundreds of pedometers for every meter of length,” Ajo-Franklin said. “That is a one-part-in-a-billion change.”

Earlier this year, they reported the results of a six-month trial on land using 22 kilometres of cable near Sacramento emplaced by the Department of Energy as part of its 13,000-mile ESnet Dark Fibre Testbed. Dark fibre refers to optical cables laid underground, but unused or leased out for short-term use, in contrast to the actively used “lit” internet. The researchers were able to monitor seismic activity and environmental noise and obtain subsurface images at a higher resolution and larger scale than would have been possible with a traditional sensor network.

“The beauty of fibre-optic seismology is that you can use existing telecommunications cables without having to put out 10,000 seismometers,” Lindsey said. “You just walk out to the site and connect the instrument to the end of the fibre.”

During the underwater test, they were able to measure a broad range of frequencies of seismic waves from a magnitude 3.4 earthquake that occurred 45 kilometres inland near Gilroy, California, and map multiple known and previously unmapped submarine fault zones, part of the San Gregorio Fault system. They also were able to detect steady-state ocean waves — so-called ocean microseisms — as well as storm waves, all of which matched buoy and land seismic measurements.

“We have huge knowledge gaps about processes on the ocean floor and the structure of the oceanic crust because it is challenging to put instruments like seismometers at the bottom of the sea,” said Michael Manga, a UC Berkeley professor of earth and planetary science. “This research shows the promise of using existing fibre-optic cables as arrays of sensors to image in new ways. Here, they’ve identified previously hypothesized waves that had not been detected before.”

According to Lindsey, there’s rising interest among seismologists to record Earth’s ambient noise field caused by interactions between the ocean and the continental land: essentially, waves sloshing around near coastlines.

“By using these coastal fibre optic cables, we can basically watch the waves we are used to seeing from shore mapped onto the seafloor, and the way these ocean waves couple into the Earth to create seismic waves,” he said.

To make use of the world’s lit fibre-optic cables, Lindsey and Ajo-Franklin need to show that they can ping laser pulses through one channel without interfering with other channels in the fibre that carry independent data packets. They’re conducting experiments now with lit fibres, while also planning fibre-optic monitoring of seismic events in a geothermal area south of Southern California’s Salton Sea, in the Brawley seismic zone.

 

You may also like to read:



Newsletter

Sign up now to stay up to date about all the news from Spatial Source. You will get a newsletter every week with the latest news.

  • This field is for validation purposes and should be left unchanged.
CSIRO, Microsoft partner on AI-driven imagery analysis
Microsoft AI platforms will power a raft of new CSIRO resear...
Trimble partners with TDC to boost mobile workflows
Trimble's partnership with TDC will bring precise positionin...
Industry excellence recognised online
Excellence and achievement are recognised at the APSEALIVE v...
Virtual history: project recreates shipwrecks in 3D
Curtin research project to render historic Australian shipwr...
MiRTK: internet-enabled GNSS corrections
Position Partners launches a new tool to take on RTK and UHF...