Star death boosts measurement of universe’s expansion

By on 9 July, 2019

Ateam of international researcher including astronomers from Swinburne University of Technology have improved the measurement of the Hubble Constant, a unit of measurement describing the universe’s current rate of expansion.

The team of researchers used data collected in 2017 during observation of the death and merging of two neutron stars with radio and light telescopes — an event which occurred 130 million years ago.

Measurements of the gravitational waves generated in the event were used to refine the Hubble constant using a new technique.

The team now place the measurement of the Hubble Constant at 70.3 km per second per megaparsec (a megaparsec is around 3.3 million light years), down from past estimates of around 74 km per second per megaparsec.

The Hubble Constant is a fundamental piece of information in describing the universe’s past, present and future, a value representing the rate of its expansion.

Estimating its value can be done by with Planck observations of cosmic microwave radiation left over after the Big Bang, or from massive stars self destructing in the distant universe.

Two neutron stars is a monumentally energetic event — two stars larger than our Sun rotate around each other hundreds of times per second before merging, firing an enormous amount of material outwards at immense speed.

Measuring this burst of gravitational waves is a third means of estimating the Hubble constant. The shape of the gravitational wave signal shows how ‘bright’ the event should have been, against which observations of the event can be compared and its distance calculated.

Data to determine the orientation of the merger is needed for this calculation, in this case provided by an ultra high resolution radio imaging of the fireball of material emitted as the stars merged.

“In order to use the gravitational waves to measure the distance, we needed to know that orientation,” said Adam Deller, of Swinburne University of Technology.

This single measurement, of an event some 130 million light-years from Earth, is not yet sufficient to resolve the uncertainty, the scientists said, but the technique now can be applied to future neutron-star mergers detected with gravitational waves.

“We think that 15 more such events that can be observed both with gravitational waves and in great detail with radio telescopes, may be able to solve the problem,” said Kenta Hotokezaka, of Princeton University.

The results of the team’s research has been published today in Nature Astronomy.

Stay up to date by getting stories like this delivered to your mailbox.
Sign up to receive our free weekly Spatial Source newsletter.

You may also like to read:


, , , , ,


Newsletter

Sign up now to stay up to date about all the news from Spatial Source. You will get a newsletter every week with the latest news.

  • This field is for validation purposes and should be left unchanged.
Covid-19 tracing app plagued by privacy, efficacy concerns
Burning questions remain over Australia's proposed Covid-19 ...
Covid-19’s impact on property values revealed in real-time
Dashboard charts hotspots and market metrics....
Geoscape launches on-demand service for distributed workforce
Geoscape launches an on-demand spatial data service for Aust...
CASA relaxes regulations in response to Covid-19
ReOC certificates to be extended by six months to ease press...
Scanning a new landscape
The open source tool unlocking facial clues to rare diseases...
Locate 2021 conference, digital engagement plan announced
Locate 2021 will take place on March 30-April 1, with digita...

Subscribe to the Spatial Source newsletter

Join more than 5,000 geospatial and surveying professionals who are feasting on the Spatial Source newsletter every week.

You have Successfully Subscribed!