“Engineering the heck out of this”: rescue of ‘lost’ Australian satellites

By on 28 June, 2017

Over the past six months, Spatial Source has reported regularly on the region’s growing developments in space infrastructure. Australia and New Zealand is in the process of launching its own precise positioning program; a new platform called Digital Earth Australia will soon provide open access to satellite imagery; and just last week Australia announced $500 million in funding for satellite intelligence.

However, in one of the greatest stories to come out of this ‘space’, a recent recovery mission for cubesats has to take the cake. For the first time in fifteen years, Australia recently launched its first satellite (or three of them in fact). Things did not turn out quite as expected.

At no fault of the Australian engineers involved, as soon as the satellites were ejected from the International Space Station in May, all three were missing. All that engineering effort and investment, lost to the darkness of space.

Thankfully, an Australian team of researchers behind the cubesat project have been busy “engineering the heck out of this.”

Australia recently launched three satellites– the nation’s first in fifteen years. As soon as they were deployed, however, all three were missing in action.

An agonising experience

Two of the lost Australian satellites have been recovered by a team led by UNSW engineers after weeks of a fraught – and at times heart-stopping – recovery operation.

University of Sydney’s Iver Cairns, leader of INSPIRE-2 team, said it had been an agonising experience: “It was intensely frustrating, and surprising, to hear nothing from INSPIRE-2 or UNSW-EC0, since both are very robust satellites that passed their pre-flight tests with flying colours,” Cairns said.

“But the recovery effort, led by our UNSW and ACSER colleagues, was a real international team effort, and something we should all be very proud of.”

The UNSW ground control team, with help from ham radio operators and colleagues at the Australian National University (ANU) and the University of Sydney, regained control of two of the cubesats last week.

“It was like something out of Apollo 13,” said Elias Aboutanios, project leader for the UNSW-EC0 satellite. “Our satellite was orbiting at 27,000 km/h almost 400km above our heads. We couldn’t see it, couldn’t inspect it, and had almost no data to work with. So we were busting our heads trying to figure out what could have gone wrong, and how to regain contact.”

The team behind the recovery mission.

In all, three Australian research satellites blasted off on April 19 from Cape Canaveral as part of the international QB50 mission, a swarm of 36 small satellites (known as ‘cubesats’) designed to explore the little-understood region above Earth known as the thermosphere.

UNSW-EC0 was the first deployed from the International Space Station (ISS) on May 25, followed by SuSAT, built by the University of Adelaide and the University of South Australia. The next day, INSPIRE-2 followed, a project led by the University of Sydney and involving ANU and UNSW, the latter of whom built the satellite and integrated the University of Sydney’s scientific payload.

Each of the QB50 cubesats is the size of a loaf of bread, weighing less than 2 kg, and will carry out the most extensive measurements ever undertaken of the thermosphere, a region between 200 and 380 km above Earth. This poorly-studied and usually inaccessible zone helps shield Earth from cosmic rays and solar radiation, and is vital for communications and weather formation.

An ‘inspiring’ rescue

Within 30 minutes of deployment from the ISS, both UNSW-EC0 and INSPIRE-2 were meant to transmit a beacon. But no signal was detected from either by the ground teams at UNSW’s Australian Centre for Space Engineering Research (ACSER) or the ANU when the cubesats flew over Sydney, which they do twice a day.

The ACSER team began to suspect the cubesats’ batteries might be to blame. In the nine months since both cubesats had been dispatched to Europe for testing, and eventually to the US for launch, they might have lost partial charge- enough that they were now unable to extend the antennas. With their antennas stowed, their beacons would now be too weak for the UNSW or ANU ground stations to detect.

“If batteries were the issue, the satellites have solar panels and should have been able to recharge,” said Joon Wayn Cheong, a research associate at UNSW and technical lead for both cubesats. “But that would have taken just one or two orbits. Yet, after almost a week, we still heard nothing. Clearly, something else was wrong.”

The engineers theorised that the satellites might be trapped in a vicious discharge/recharge loop: they didn’t have enough power to extend antennas, but could not recharge completely because they were repeatedly trying to deploy antennas and stabilise orientation, draining the batteries again and again. So the ACSER team wrote software commands telling the cubesats to power down and wait until being fully recharged before deploying antennas.

This Dwingeloo radio telescope from 1950s made recovery possible.

But before the commands could be sent, the engineers needed to find more powerful transmitters that the satellites – operating with stowed antennas – could hear.

Aboutanios, who is deputy director of ACSER, reached out to the Defence Department, Optus, the CSIRO and NASA, but no equipment was immediately available or could broadcast on the right frequencies. Meanwhile Cheong, who has an amateur radio licence, contacted his worldwide network.

That’s when Jan van Muijlwijk came to the rescue. The sound technician near Groningen, in the Netherlands, had access to the Dwingeloo radio telescope, a restored 25-metre dish from the 1950s that was once used for astronomy and is now run by amateur astronomers and ham radio enthusiasts.

The problem was van Muijlwijk could only help on weekends, which meant a tense wait. On the first attempt, on Saturday 10 June, the Dwingeloo dish detected a weak signal from INSPIRE-2, and immediately uplinked the new commands. On INSPIRE-2’s next orbital pass, at midnight on Sunday 11 June, a clear beacon was detected by the Dwingeloo dish in the Netherlands and by former UNSW engineer Barnaby Osborne now at the International Space University in France, and later by INSPIRE-2 team member Dimitrios Tsifakis at ANU, along with ham radio operators in Spain, the US and Australia.

NORAD gets it wrong

That had recovered one of he missing satellites, however when the Dutchman pointed the dish at the second, UNSW-EC0, there nothing but silence.

ACSER’s team at UNSW, were elated to have recovered INSPIRE-2, but also stumped. Why was UNSW-EC0 still silent? Had they identified its problem, or was something else wrong? Had some other component failed? Would they ever be able to contact the satellite?

Aboutanios, Cheong and their UNSW colleagues – Ben Southwell, William Andrew, John Lam, Luyang Li and Timothy Guo – regrouped to review what they knew, and work through more scenarios. They also looped in Osborne in France and Tsifakis in Canberra.

To find ‘Echo’ – as they now dubbed their satellite – the team had relied on positioning data from NORAD (North American Aerospace Defence Command), which tracks and catalogues objects orbiting Earth. The cubesats had been shot out of the ISS in threes, and NORAD had detected this. It had then waited for the three cubesats to drift apart enough that they could be tagged with their names and positions.

But what if NORAD had mislabelled UNSW-EC0? Could they be listening for – and transmitting commands to – the wrong satellite?

ACSER Deputy Director Dr Elias Aboutanios holding the UNSW-EC0 cubesat before its launch. (Credit: Grant Turner/UNSW)

They went back through the NORAD data and identified the other two satellites deployed at the same time – Nanjing University’s NJUST-1 and University of Colorado’s Challenger – then asked van Muijlwijk to point his dish at the other two cubesats and listen for UNSW-EC0’s beacon from those instead.

“As soon as the Dwingeloo dish pointed to what the NORAD data said was the Challenger cubesat, it detected a weak signal that was clearly from UNSW-EC0,” recounted Cheong. “So they fired off the reset commands. And on the very next orbital pass, they received a beautiful, clear signal from UNSW-EC0.”

Aboutanios mused: “For more than three weeks, we were looking in the wrong part of the sky for our satellite – we couldn’t have known that. But the procedures we put in place, the scenarios we ran and the solutions we developed, they all paid off. You could say we succeeded by engineering the heck out of this.”

One more to go

UNSW-EC0 and INSPIRE-2 now join the 20 other QB50 satellites successfully contacted so far. Of the 28 QB50 cubesats originally deployed from the ISS in May, eight have still not been heard from – including Australia’s third cubesat, SuSAT, from the University of Adelaide and the University of South Australia.

The two recovered Australian satellites will now go through a long testing process leading to their commissioning. Later this year, they will join other active QB50 satellites in collecting scientific data.

The three research cubesats are the first Australian satellites to go into space in 15 years; there have only been two before: Fedsat in 2002 and WRESAT in 1967.

“We’ve got more hardware in space today than Australia’s had in its history,” said Andrew Dempster, director of ACSER and a member of the advisory council of the Space Industry Association of Australia. “The QB50 mission shows what we can do in Australia in the new world of ‘Space 2.0’, where the big expensive agency-driven satellites are being replaced by disruptive low-cost access to space.”

You may also like to read:


,


Newsletter

Sign up now to stay up to date about all the news from Spatial Source. You will get a newsletter every week with the latest news.

Geospatial in the age of the metaverse
The geospatial sector is set to both underpin the metaverse ...
$140 million allocated for WA Spatial Digital Twin
The 10-year project aims to improve infrastructure delivery,...
March 21: Celebrating Global Surveyors’ Day
March 21 is the day on which we celebrate the essential work...
Government releases new Local Drone Rules map
UAV users can now easily see whether they need to obtain aut...
Photogrammetry with enhanced cloud capabilities
SimActive has announced improved cloud environment enhanceme...